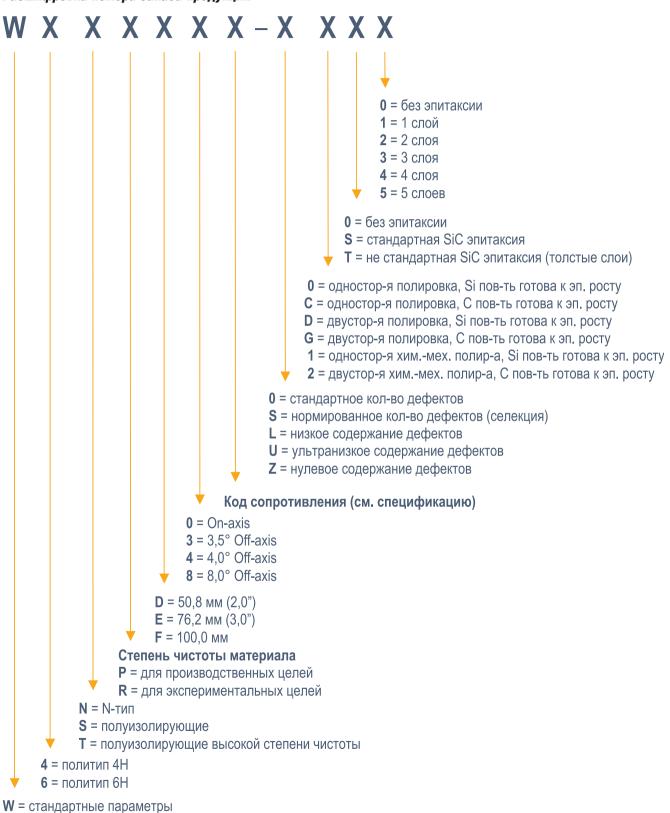
Пластины монокристаллов карбида кремния SiC SiC подложки с эпитаксией

Компания Cree – мировой лидер в области разработки и производства технологий и материалов на основе карбида кремния (SiC) и нитрида галлия (GaN) поставляет на мировой рынок пластины монокристаллов SiC и подложки с SiC и GaN эпитаксией диаметром 50,2 мм, 76,2 мм и 100,0 мм

Физические свойства

Политип	Политип Кристалл 4H-SiC	
Кристаллическая структура	гексагональная	гексагональная
Ширина запрещенной зоны	3,26 эВ	3,03 эВ
Теплопроводность (п-тип, 0,020 Ом•см)	а ~ 4,2 Вт/см • К при 298 К с ~ 3,7 Вт/см • К при 298 К	_
Теплопроводность (HPSI)	a ~ 4,9 Вт/см • К при 298 К c ~ 3,9 Вт/см • К при 298 К	_
Постоянная кристаллической решетки	a = 3,073 Å c = 10,053 Å	a = 3,081 Å c = 15,117 Å
Твердость по Моосу	~ 9	~ 9


Применение

- Высокочастотные силовые приборы
- Высокомощные приборы
- Высокотемпературные приборы
- Оптоэлектронные приборы
- III-V рост нитридных структур

Описание продукции

Расшифровка номера заказа продукции

Стандартная спецификация

Характеристики подложек диаметром 50,8 мм

Параметры подложек	Стандарты Cree			
Диаметр	2,000"±0,015" 50,8 мм ± 0,38 мм			
Толщина в центральной точке				
6H on-axis $0.010^{\circ} \pm 0.001^{\circ}$ $254.0 \text{ MKM} \pm 64.0 \text{ MKM}$				
6H off-axis; 4H полуизолирующие	0,0145" ± 0,0025" 368,0 мкм ± 64,0 мкм			
Легирующая примесь	n-type: Nitrogen			
Длина базового среза	0,625" ± 0,065" 15,88 мм ± 1,65 мм			
Длина вторичного базового среза	0,315" ± 0,065" 8,0 мм ± 1,65 мм			
Ориентация	поверхности			
6H и 4H on-axis {0001} ± 0,5°				
6H off-axis 3,5° по отношению к <11 $\overline{2}$ 0> \pm 0,5°				
4H off-axis	8,0° по отношению к <1120> ± 0,5°			
Обработка поверхности	Химическая обработка поверхности по согласованию			
Ортогональная дезориентация	± 5,0°			
Ориентация базового среза	<1120> ± 5,0°			
Ориентация вторич	ного базового среза			
Поверхность С	90,0° пр чс от первичной ± 5,0°			
Поверхность Si	90,0° по чс от первичной ± 5,0°			
паковка FLUOROWARE® каждая пластина в отдельном контейнере				

Характеристики подложек диаметром 76,2 мм

Параметры подложек	Стандарты Сгее				
Диаметр	3,000" ± 0,015" 76,2 мм ± 0,38 мм				
Толщина в центральной точке					
N-тип off-axis; Полуизолирующие	0,0138" ± 0,001" 350,0 мкм ± 25,4 мкм				
N-тип on-axis	$0.0145" \pm 0.0025"$ $368.0 \text{ mkm} \pm 64.0 \text{ mkm}$				
Легирующая примесь	n-type: Nitrogen				
Длина базового среза	0,875" ± 0,125" 22,22 мм ± 3,17 мм				
Длина вторичного базового среза	0,440" ± 0,060" 11,18 мм ± 1,52 мм				
Ориентация	поверхности				
On-axis {0001} ± 0,5°					
Off-axis	$4,0^\circ$ по отношению к $<11\overline{2}0>\pm0,5^\circ$ $8,0^\circ$ по отношению к $<11\overline{2}0>\pm0,5^\circ$				
Обработка поверхности	Двусторонняя полировка				
Ортогональная дезориентация	± 5,0°				
Ориентация базового среза	<1120> ± 5,0°				
Ориентация вторич	ного базового среза				
Поверхность С	90,0° пр чс от первичной ± 5,0°				
Поверхность Si	90,0° по чс от первичной ± 5,0°				
Упаковка	FLUOROWARE® каждая пластина в отдельном контейнере				

Характеристики подложек диаметром 100,0 мм

Параметры подложек	Стандарты Сгее			
Диаметр	100,0 мм +0,0/-0,5 мм			
Толщина в центральной точке				
N-тип on-axis 500,0 мкм ± 50,0 мкм				
N-тип off-axis	380,0 мкм ± 25,0 мкм			
Полуизолирующие	400,0 мкм ± 50,0 мкм			
Легирующая примесь	n-type: Nitrogen			
Длина базового среза	32,5 мм ± 2,0 мм			
Длина вторичного базового среза $18.0 \text{ мм} \pm 2.0 \text{ мм}$				
Ориентация поверхности				
On-axis	{0001} ± 0,5°			
Off-axis	4,0° по отношению к <1120> ± 0,5°			
Обработка поверхности	Двусторонняя полировка			
Ортогональная дезориентация	± 5,0°			
Ориентация базового среза	<1120> ± 5,0°			
Ориентация вторич	ного базового среза			
Поверхность С	90,0° пр чс от первичной ±5,0°			
Поверхность Si	90,0° по чс от первичной ± 5,0°			
Упаковка	FLUOROWARE® каждая пластина в отдельном контейнере			

Рис.1. Схематичное изображение базового и вторичного базового срезов пластины

Параметры эпитаксии на SiC подложках

Стандартные параметры эпитаксиальных слоев на SiC подложках диаметром 50,8 мм, 76,2 мм и 100,0 мм

Ориентация поверхности подложек: рост эпитаксиальных слоев возможен только на подложках off-axis ориентации					
Проводимость	n-тип	р-тип			
Легирующая примесь	Nitrogen	Aluminum			
Концентрация примесей	ND – NA	ND – NA			
Со стороны Si	9•10 ¹⁴ –10 ¹⁹ cm ⁻³	9•10 ¹⁴ –10 ¹⁹ см ⁻³			
Со стороны С	10 ¹⁶ -10 ¹⁹ cm ⁻³	_			
Погрешность	± 25%	± 50%			
Толщина эпитаксиального слоя со стороны Si					
0,2-50,0 микрон	± 10% от выбранной толщины	± 10% от выбранной толщины			
Толщина эпитаксиального слоя со стороны С					
0,2-1,0 микрон	± 25% от выбранной толщины	_			
1,0-10,0 микрон	± 15% от выбранной толщины	_			

Примечания:

- Нерабочая область (закраина) пластин диаметром 50,8 мм и 76,2 мм составляет 2 мм от края, для пластин диаметром 100,0 мм 3 мм
- N-тип: эпитаксиальный слой <20 микрон, 10¹⁸, буферный слой 0,5 микрон
- N-тип: эпитаксиальный слой ≥20 микрон, 10¹⁸, буферный слой 1,0 микрон
- Р-тип: буферный слой отсутствует
- Заданная плотность примеси доступна после определенной толщины эпитаксии
- Для политипа 6Н толщина эпитаксиальных слоев ограничена 10 микрон
- Возможно выполнение нестандартных заказов

Параметры эпитаксии на SiC подложках

Характеристики	Приемка		Методы тестирования	Описание дефектов		
Точечные дефекты	50,8 мм 76,2 мм 100,0 мм	30 60 90		D1		
Царапины	,	-х Ø пластины		D2		
Лунки (вмятины)	< 5% пов	реждений		D3		
Ступенчатые образования	4,0° off-axis 8,0° off-axis	N/A <10% повреждений	Облучение рассеянным светом	D4		
Беспримесность тыльной стороны	чистота 95%			D5		
Краевые сколы	Два скола радиусом 1,5 мм			D6		
Идентификационный номер	Į	Ца				
Базовый срез пластины	Ţ	Ца		D7		
Дефекты эпитаксии	25 cm ⁻²		25 см-2		Микроскоп	-
Концентрация примеси	См. спецификацию		Hg Probe CV	_		
Толщина	См. спецификацию		См. спецификацию		FTIR	-

Примечания:

• Нерабочая область (закраина) пластин диаметром 50,8 мм и 76,2 мм составляет 2 мм, для пластин диаметром 100,0 мм – 3 мм

Описания дефектов

D1. Точечные дефекты

Дефекты видны невооруженным глазом (диагональ > 50 микрон). Большие точечные дефекты < 3 мм, стоящие отдельно, принимаются за один дефект.

D2. Царапины

Борозды или порезы на поверхности пластины, имеющие соотношение длина:ширина более чем 5:1.

D3. Лунки (вмятины)

Форма дефекта похожа на след от «мяча». Определятся в процентном отношении к поврежденной площади.

D4. Ступенчатые образования

Ступенчатые образования выглядит как узор из параллельных линий перпендикулярных главному срезу. Оценивается в процентном соотношении поврежденной площади к площади поверхности пластины.

D5. Беспримесность тыльной поверхности

Определяется равномерностью цвета поверхности подложки. Следует отметить, что область возле центра может быть темнее из-за более высокого уровня легирования. Определяется в процентном соотношении.

D6. Краевые сколы

Области, где материал был непреднамеренно отколот от подложки. Данный дефект не влияет на рост эпитаксиальных слоев.

D7. Идентификационный номер и главный срез пластины

Должны быть различимы.

Стандартная номенклатура SiC подложек диаметром 50,8 мм, 76,2 мм и 100,0 мм

					Для пр	оизводствен	ных целей	Для эксп	ериментальн	іых целеі
Код	Тип	Ориентация	Дефекты	Удельное сопротивление, Ом•см	1-4	5-20	>20	1-4	5-20	>20
SIC подложки диаметром 50,8 мм										
W4TRDOR-0D00	HPSI	On-axis	_	≥10⁵	_	_	_	+	+	+
W4TRD8R-0D00	HPSI	8° Off-axis	_	≥10⁵	_	_	_	+	+	+
W6NRD0X-0000	n	On-axis	_	0,020-0,200	_	_	_	+	+	+
W6NxD3K-0000	n	3,5°Off-axis	_	0,040-0,090	+	+	+	+	+	+
			SiC подл	ожки диаметром 76,2 мм						
W4NRE0X-0D00	n	On-axis	_	0,013-0,500	_	_	_	+	+	+
W4NxE4C-SD00	n	4° Off-axis	S	0,015-0,028	+	+	+	+	+	+
W4NxE8C-SD00	n	8° Off-axis	S	0,015-0,028	+	+	+	+	+	+
W4NxE4C-LD00	n	4° Off-axis	L	0,015-0,028	+	+	+	+	+	+
W4NxE8C-LD00	n	8° Off-axis	L	0,015-0,028	+	+	+	+	+	+
W4NxE4C-UD00	n	4° Off-axis	U	0,015-0,028	+	+	+	+	+	+
W4NxE8C-UD00	n	8° Off-axis	U	0,015-0,028	*	*	*	+	+	+
W4NxE4C-ZD00	n	4° Off-axis	Z	0,015-0,028	*	*	*	+	+	+
W4TREOR-OD00	HPSI	On-axis	_	90% ≥10⁵	_	_	_	+	+	+
W4TRE8R-0D00	HPSI	8° Off-axis	_	90% ≥10⁵	_	_	_	+	+	+
			SiC подл	эжки диаметром 100,0 мм						
W4NRF0X-0D00	n	On-axis	_	90% ≥10⁵	_	_	_	+	+	+
W4NxF4C-SD00	n	4° Off-axis	S	0,015-0,028	*	*	*	+	+	+
W4NxF4C-LD00	n	4° Off-axis	L	0,015-0,028	*	*	*	+	+	+
W4NxF4C-UD00	n	4° Off-axis	U	0,015-0,028	*	*	*	+	+	+
W4TRF0R-0D00	HPSI	On-axis	_	0,013-0,500	_	_	_	+	+	+
° – доступно по запросу										
	Тип полировки									
			По	олировка корундом						
		Хими	ико-механическа	ая полировка (обоих сторон S	Si или C)					

SiC эпитаксия на подложках диаметром 50,8 мм, 76,2 мм и 100,0 мм

Кол-во эпитаксиальных слоев	≤5 микрон	6 микрон	10 микрон	11 микрон	20 микрон	21 микрон	50 микрон
	SiC эпитаксия на подложках диаметром 50,8 мм						
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
		SiC эпитаксия н	а подложках ди	аметром 76,2 мі	И		
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
	SiC эпитаксия на подложках диаметром 100,0 мм						
1	*	*	*	*	*	_	_

Примечания:

Gan / Algan эпитаксия

Код	Тип подложки	Описание
WxNRD0X-00G2	50,8 мм п-SiC	Один слой эп-ии GaN (UID, n, Fe)
W4NRE0X-0DG2	76,2 мм n-SiC	Один слой эп-ии GaN (UID, n, Fe)
W4NRF0X-0DG2	100 мм n-SiC	Один слой эп-ии GaN (UID, n, Fe)
W4TRD0R-0DG2	50,8 mm HPSI SiC	Один слой эп-ии GaN (UID, n, Fe)
W4TREOR-ODG2	76,2 MM HPSI SiC	Один слой эп-ии GaN (UID, n, Fe)
W4TRF0R-0DG2	100 MM HPSI SiC	Один слой эп-ии GaN (UID, n, Fe)
W2IMD0R-0DG2	50,8 мм Sapphire	Один слой эп-ии GaN (UID, n, Fe)
W2IMEOR-ODG2	76,2 мм Sapphire	Один слой эп-ии GaN (UID, n, Fe)
W2IMF0R-0DG2	100,0 мм Sapphire	Один слой эп-ии GaN (UID, n, Fe)
W4NRF0X-0DGx	100,0 мм n-SiC	GaN/AlGaN HEMT (і или n-HEMT)
W4TRD0R-0DGx	50,8 MM HPSI SiC	GaN/AlGaN HEMT (і или n-HEMT)
W4TREOR-ODGx	76,2 мм HPSI SiC	GaN/AlGaN HEMT (і или n-HEMT)
W4TRF0R-0DGx	100,0 MM HPSI SiC	GaN/AlGaN HEMT (і или n-HEMT)
W2IMDOR-ODGx	50,8 мм Sapphire	GaN/AlGaN HEMT (і или n-HEMT)
W2IMEOR-ODGx	76,2 мм Sapphire	GaN/AlGaN HEMT (і или n-HEMT)
W2IMFOR-ODGx	100,0 мм Sapphire	GaN/AlGaN HEMT (і или n-HEMT)

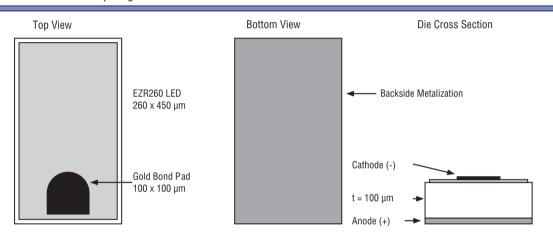
Примечания:

• по согласованию возможно выполнение не стандартных заказов

[•] по запросу возможна не стандартная толщина эпитаксиальных слоев

Кристаллы EZBright® серии 260

EZBright™ – новое поколение полупроводниковых мощных кристаллов светодиодов, сочетающее в себе высокую эффективность InGaN материалов и уникальный оптический дизайн, позволяющий достичь максимальной эффективности концентрации светового потока и обеспечить ламбертовское распределение излучения.


Стандартное распределение светового потока по поверхности кристалла достигается применением уникальной технологии. Суть ее заключается в образовании на поверхности оптически прозрачной SiC подложки системы линз путем травления SiC через специальную маску. Система линз позволяет эффективно собрать световой поток с поверхности кристалла и обеспечить независимость его плотности распределения от временных флюктуаций светового потока по поверхности р-п – перехода. Это, в частности,

позволяет решить проблему достижения максимальной эффективности при получении белого света с помощью нанесения на кристалл люминофора: плотность распределения фосфора в геле может быть оптимально подобрана в соответствии с плотностью распределения светового потока по площади кристалла и будет оставаться инвариантной к деградационным процессам излучающего перехода.

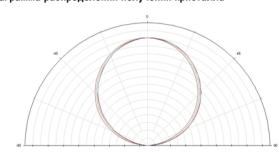
Смещение контактной площадки катода на край кристалла позволяет увеличить площадь излучения поверхности до 90%.

Кристаллы обладают низким прямым напряжением, имеют высоту около 100 мкм и требуют для электрического подключения всего одного проводника.

Cxxx EZR260-S xx 00 Chip Diagram

Особенности:

- Высокая эффективность
 - 450 & 460 nm
- EZR-24™ 24-27 mW
- EZR-27™ 27-30 mW
- EZR-30™ 30-33 mW
- 470 nm
- EZR-21™ 21-24 mW
- EZR-27™ 24-27 mW
- EZR-30™ 27-30 mW
- Ламбертовское распределение излучения
- Низкое падение напряжения, 3,2 В при 20 мА


Области применения:

- LCD подсветка
- мобильных телефонов
- цифровых камер
- мониторов
- Вспышки в цифровых камерах
- LED видеодисплеи

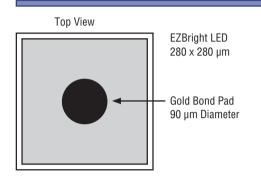
Эксплуатационные характеристики

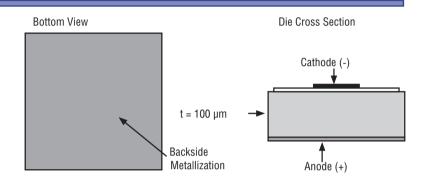
Наименование	Значение
Номинальный прямой ток, мА	30
Максимальное обратное напряжение, В	5
Максимальная температура кристалла, °С	125
Минимальная рабочая температура, °С	-40
Максимальная рабочая температура, °С	+100

Диаграмма распределения излучения кристалла

Стандартная номенклатура кристаллов в наборе

Группа	Тип набора бинов	Номинальная мощность излучения, мВт	Длина волны, нм	
EZR-30	C450EZR260-S3000	3033	445455	
EZR-30	C460EZR260-S3000	3033	455465	
EZR-27	C450EZR260-S2700	2730	445455	
EZR-27	C460EZR260-S2700	2730	455465	
EZR-27	C470EZR260-S2700	2730	465475	
EZR-24	C450EZR260-S2400	2427	445455	
EZR-24	C460EZR260-S2400	2427	455465	
EZR-24	C470EZR260-S2400	2427	465475	
EZR-21	C470EZR260-S2100	2124	465475	


Кристаллы EZBright® серии 290


CxxxEZ290-Sxx00

EZBright – новое поколение кристаллов светодиодов, сочетающее в себе высокую эффективность InGaN материалов и уникальный оптический дизайн, позволяющий достичь максимальной эффективности концентрации светового потока и обеспечить ламбертовское распределение излучения.

Кристаллы обладают низким прямым напряжение, имеют высоту около 100 мкм и требуют для электрического подключения всего одного проводника.

Cxxx EZ290-S0200 Chip Diagram

Особенности:

- Высокая эффективность
- 460 & 470 nm
 - EZ-12™ 12 mW min. (470 nm only)
- EZ-16™ 16 mW min.
- EZ-18™ 18 mW min.
- EZ-21™ 21 mW min.
- EZ-24[™] 24 mW min. (460 nm only)
- 505 nm EZ-8.5™ 8.5 mW min.
- 527 nm EZ-7™ 7 mW min.
- Ламбертовское распределение излучения
- Низкое падение напряжения, 3.2 В при 20 мА

Области применения:

- LCD подсветка
- мобильных телефонов
- цифровых камер
- мониторов
- Вспышки в цифровых камерах
- LED видеодисплеи

Эксплуатационные характеристики

Наименование	Значение
Номинальный прямой ток, мА	30
Максимальное обратное напряжение, В	5
Максимальная температура кристалла, °С	125
Минимальная рабочая температура, °С	-40
Максимальная рабочая температура, °С	+100

Стандартная номенклатура кристаллов в наборе

Группа	Тип набора бинов	Номинальная мощность излучения, мВт	Длина волны, нм
EZ-24	C460EZ290-S2400	2435	455465
EZ-21	C460EZ290-S2100	2135	455465
EZ-18	C460EZ290-S1800	1835	455465
EZ-16	C460EZ290-S1600	1635	455465
EZ-21	C470EZ290-S2100	2130	465475
EZ18	C470EZ290-S1800	1830	465475
EZ-16	C470EZ290-S1600	1630	465475
EZ-12	C470EZ290-S1200	1230	465475
EZ-8.5	C505EZ290-S0850	8,515	500510
EZ-7	C527EZ290-S0700	715	520535

Кристаллы EZBright® серии EZ700

CxxxEZ700-Sxx000

EZBrightTM - новое поколение полупроводниковых мощных кристаллов светодиодов, сочетающее в себе высокую эффективность InGaN материалов и уникальный оптический дизайн, позволяющий достичь максимальной эффективности концентрации светового потока и обеспечить ламбертовское распределение излучения.

Стандартное распределение светового потока по поверхности кристалла достигается применением уникальной технологии. Суть ее заключается в образовании на поверхности оптически прозрачной SiC подложки системы линз путем травления SiC через специальную маску. Система линз позволяет эффективно собрать световой поток с поверхности кристалла и обеспечить независимость его плотности распределения от временных флюк-

Особенности:

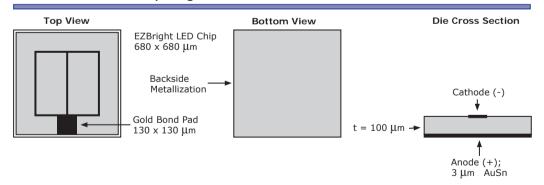
- Высокая эффективность
- Минимум 200 мВт@260 мА, 450 нм
- Ламбертовское распределение излучения
- Низкое падение напряжения, 3,6 В при 350 мА
- Устойчивость к электростатическому напряжению 1000 В

Области применения:

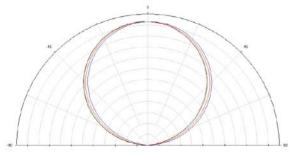
- Общее освещение
- Автомобильное
- Авиационное
- Архитектурное и ландшафтное
- Уличное
- Мощные светодиодные лампы
- Подсветка LCD экранов больших площадей
- Светофоры

туаций светового потока по поверхности р-п – перехода. Это, в частности, позволяет решить проблему достижения максимальной эффективности при получении белого света с помощью нанесения на кристалл люминофора: плотность распределения фосфора в геле может быть оптимально подобрана в соответствии с плотностью распределения светового потока по площади кристалла и будет оставаться инвариантной к деградационным процессам излучающего перехода.

Кристаллы обладают низким прямым напряжением, обеспечивает квантовый выход около 30% и имеют высоту около 100 мкм. Малые размеры кристалла ЕZ700 (700х700 мкм) приводят к снижению его стоимости в массовом производстве, что соответственно влияет на стоимость изделий на его основе. Поэтому лампы на основе EZ700 (XR-C7090) являются высокоэффективным решением для бюджетных приложений, обеспечивая самую низкую стоимость люмена в промышленности.


Эксплуатационные характеристики

Наименование	Значение
Максимальный прямой ток, мА	1000
Максимальное обратное напряжение, В	5
Максимальная температура кристалла, °С	125
Минимальная рабочая температура, °С	-40
Максимальная рабочая температура, °С	+100

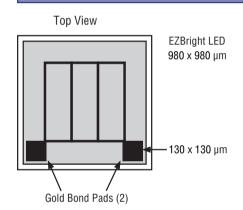

Стандартная номенклатура кристаллов в наборе

Группа	Тип набора бинов	Номинальная мощность излучения, мВт	Длина волны, нм
EZ-260	C450EZ700-S26000	260300	445455
EZ-200	C450EZ700-S20000	200260	445455
EZ-240	C460EZ700-S24000	240280	455465
EZ-180	C460EZ700-S18000	180240	455465
EZ-220	C470EZ700-S22000	220280	465475
EZ-160	C470EZ700-S16000	160220	465475

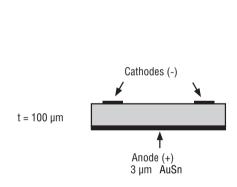
CxxxEZ700-Sxx000 Chip Diagram

Диаграмма распределения излучения кристалла

Кристаллы EZBright® серии EZ1000


CxxxEZ1000-Sxx000

EZBrightTM – новое поколение полупроводниковых мощных кристаллов светодиодов, сочетающее в себе высокую эффективность InGaN материалов и уникальный оптический дизайн, позволяющий достичь максимальной эффективности концентрации светового потока и обеспечить ламбертовское распределение излучения.


Стандартное распределение светового потока по поверхности кристалла достигается применением уникальной технологии. Суть ее заключается в образовании на поверхности оптически прозрачной SiC подложки системы линз путем травления SiC через специальную маску. Система линз позволяет эффективно собрать световой поток с поверхности кристалла и обеспечить независимость его плотности распределения от временных флюктуаций светового потока по поверхности р-п – перехода. Это, в частности, позволяет решить проблему достижения максимальной эффективности при получении белого света с помощью нанесения на кристалл люминофора: плотность распределения фосфора в геле может быть оптимально подобрана в соответствии с плотностью распределения светового потока по площади кристалла и будет оставаться инвариантной к деградационным процессам излучающего перехода.

Кристаллы обладают низким прямым напряжением, обеспечивают квантовый выход более 50% и имеют высоту около 100 мкм. Для снижения плотности тока контактная система имеет две точки разварки проводников катода, что снижает омические потери при токах более 350 мА в 2 раза. Смещение контактных площадок катода на край кристалла позволяет увеличить площадь излучения поверхности до 90%.

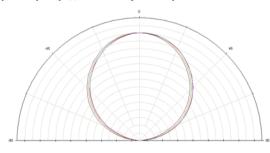
C xxx EZ 1 000-S xx 000 Chip Diagram

Bottom View Backside Metalization

Die Cross Section

Особенности:

- Высокая эффективность
- Минимум 300 мВт@350 мА, 450...470 нм
- Ламбертовское распределение излучения
- Низкое падение напряжения, 3.3В при 350 мА
- Устойчивость к электростатическому напряжению 1000 В


Области применения:

- Общее освещение
 - Автомобильное
- Авиационное
- Архитектурное и ландшафтное
- Уличное
- Мощные светодиодные лампы
- Подсветка LCD экранов больших площадей
- Проекционные дисплеи

Эксплуатационные характеристики

Наименование	Значение
Максимальный прямой ток, мА	1000
Максимальное обратное напряжение, В	5
Максимальная температура кристалла, °С	125
Минимальная рабочая температура, °С	-40
Максимальная рабочая температура, °С	+100

Диаграмма распределения излучения кристалла

Стандартная номенклатура кристаллов в наборе

Группа	Тип набора бинов	Номинальная мощность излучения, мВт	Длина волны, нм
EZ-200	C450EZ1000-S20000	200300	445455
EZ-200	C460EZ1000-S20000	200300	455465
EZ-200	C470EZ1000-S20000	200300	465475
EZ-300	C450EZ1000-S30000	300380	445455
EZ-300	C460EZ1000-S30000	300380	455465
EZ-300	C470EZ1000-S30000	300380	465475

Бескорпусные SiC CBY MESFET транзисторы

CRF24010D и CRF24060D - бескорпусные карбид кремниевые СВЧ MESFET транзисторы. По многим параметрам карбид кремния значительно превосходит полупроводниковые материалы на основе Si и GaAs, что делает его незаменимым при производстве мощных полупроводниковых приборов.

Особенности

- Рекордная плотность мощности СВЧ на кристалле
- Сверхширокая полоса частот усиления >5 ГГц
- Рабочая температура кристалла +255°C!
- Высокое напряжение питания 48 В упрощает цепи согласования
- Выходная мощность 10 Вт (CRF24010D) и 60 Вт (CRF24060D)
- Высокая эффективность: КПД свыше 45%
- Высокое усиление более 13 дБ

Области применения

- Радиопередающие устройства военного и космического применения
- Сверхширокополосные системы связи
- Помехо-защищенные системы передачи информации
- Высокотемпературные радиационно-стойкие приборы

Упаковка

Поставляются в Gel-Pack@ контейнере. Зафиксированы на неклейкой липкой мембране на время перевозки.

Рекомендации по сборке:

- Рекомендованный припой AuSn (80/20)
- Захват кристалла рекомендуется осуществлять вакуумным пинцетом
- Покрытие золотом обратной стороны кристалла составляет не менее 5 микрон
- Метод распайки термоультразвуковая или термокомпрессионная сварка
- Для внешней распайки используется золотая проволока

Краткие электрические характеристики бескорпусных карбид-кремниевых СВЧ MESFET-транзисторов

Наименование параметра /Тип прибора	CRF24010	CRF24060
Выходная мощность, Вт	10	60
Рабочее напряжение, В	2848	2848
Максимальное напряжение сток-исток, В	100	120
Типовой КПД, %	45	45
Типовое усиление, дБ	15	13
Диапазон частот, ГГц	> 5	> 5
Рабочая температура перехода, °С	255	250
Тепловое сопротивление переход-корпус, °С/Вт	5,6	1,4

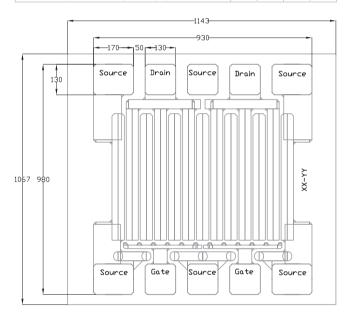


Рис.1. Размеры кристалла CRF24010D: длина - 1143 (+/- 25) микрон;

ширина - 1067 (+/- 25) микрон;

толщина - 300 микрон.

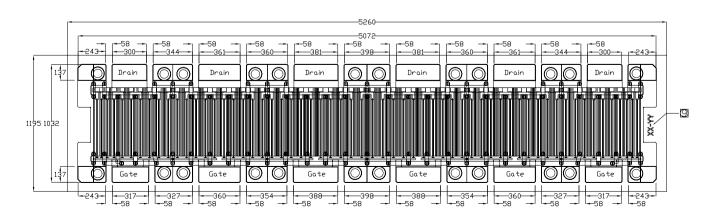


Рис.2. Размеры кристалла CRF24060D: длина — 5260 микрон; ширина — 1195 микрон; толщина — 100 микрон.